GAS-DYNAMIC CALCULATION OF PULSATING
FLOW IN PIPELINES
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A numerical solution is examined for a system of equations of one~-dimensional isothermal
flow of a perfect gas in a horizontal pipe with a periodically varying function of the flow rate
at the boundary. The numerical solution is compared with the solution of the linearized
problem. The results can be used to calculate the pulsating motion of gas in the pipeline
systems of piston compressors [1].

The one-dimensional isothermal motion of a perfect gas in a-horizontal cylindrical pipe is described
by a system of quasilinear hyperbolic equations [2]:
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Here x is the coordinate along the axis of the pipe, t is the time, P, W, and p are the pressure, veloc-
ity, and density of the gas averaged over the cross section, D is the diameter of the pipe, A is the coeffi-
cient of friection, and C is the velocity of sound.

A stationary distribution of gas pressure and velocity along the length of the pipe is set as the initial
conditions:

P (z,0) = Py, = const, W(z,0) = W, =const, 0L 2 L 4)

The neglect of pressure losses due to friction in the initial conditions for the concrete example con-
sidered below proves to have no significant effect on the characteristics of flow for times long enough after
the start and possessing practical interest. The boundary conditions have the form

W0, ) = Wy + Wysin ot, P (L, ) = P, 5)

The solution of system (1)-(3) for the conditions (4) and (5) was determined by the numerical method
of finite differences (method of grids). A characteristic form of writing (1)-(3) was used for the numerical
calculation:
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where h and 7 are the steps of an orthogonal grid with respect to the x

\J coordinate and the time t, respectively. Additional finite-difference func-

tions, approximating the corresponding equations of system (6) in the

Fig. 3 vicinity of the boundary, were used in determining the solution at the
boundary points. The boundary difference equation for the point i = 0 has

the form
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Correspondingly for the pointi = N
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An analogous implicit difference system for solving a quasilinear system of hyperbolic equations has
been examined by a number of authors [3-86].

The system of difference equations obtained together with the boundary conditions (5) form a closed
system of linear algebraic equations, for whose solution a matrix method was used. The preliminary in-

troduction of the variables
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of the original system led to a dimensionless form.

The following numerical values of the parametfers were chosen for the example under consideration:
L =20 m, C =315 m/sec, Wy = 20 m/sec, Py =5 104 kg/m?, w, =5 m/sec, w = 23 sec, D = 0.05 m, A =
0.02, and the steps of the grid were h* = 0.05 and 7* = 0.15, respectively.

The dependence on the time t* of the gas velocity at the middle and end points and of the pressure at
the start and middle of the pipe are shown by solid lines in Figs. 1-4. The graphs are constructed on the .
basis of calculations carried out using a BESM-6 electronic computer. The convergence of the numerical
solution was studied practically by comparison with solutions obtained for variations in the steps of the
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Fig. 6 In connection with the fact that at present approximative

methods [1, 2, 7-9] based on linearization of the original system
1)-(3) are used to solve problems of the analysis of pulsating movement of gas in pipelines, the problem of
estimating their errors is of interest. According to the results obtained in [7, 8], using linearization by
means of a representation of the desired flow parameters in the form of a sum of stationary and small non-
stationary components, for a stationary oscillatory process with the boundary conditions (5),the solution of
the linearized system (1)-(3) can be presented in the form

W (z*, %) =1+ m{sin Ht* [cosHz*ch MR (2 — z*) +
+ cos H (2 — z*)ch MRz *] — cos Ht* [sin Hz* sh MR (2 — z*)  sin H (2 — z¥) sh MRz*]} a1)
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X A2 — x*)— cos H (2 — x*)sh MRx*] 4 cos Ht* [sin H (2 — z*)ech MRz* — sin Hx*ch MR (2 — z*)]} 12)

In Figs. 1-4 the dashed curves represent solutions of the linearized system (1)-(3) at the correspond-
ing points obtained with the use of these relations. The comparision shows that after completion of the
transient processes (t* > 10) the solutions of the nonlinear and linearized systems become very close in
frequency and phase of the oscillations but can differ considerably in amplitude.

The lengthwise distributions of oscillation amplitudes of velocity and pressure for the nonlinear and
linearized systems are represented by solid and dashed curves, respectively, in Figs. 5 and 6. Since the
divergence of the amplitudes reaches values on the order of 50%, linearization can substantially show up
the precision in determining the characteristics of the oscillatory process.

Additional studies are necessary to establish the exact limits of the ratio of W, to W, within which
it is possible to linearize the system (1)-(3). However, because this ratio is always greater than 0.25 in
real pipeline systems of piston compressors, one can be sure that with the use of a linearized system for
analyzing gas-dynamic processes in pipelines the results obtained are very rough.

The problem of calculating the pulsating movement of gas in a concrete pipeline system of a piston
compressor differs from that examined in that the solutions of system (1)-(3) for several sections must be
pieced together using the boundary conditions. The numerical method described above with the correspond-
ing variables can also be used for this case.
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